翻訳と辞書
Words near each other
・ Hua Taphan District
・ Hua Tianyou
・ Hua Tou
・ Hua Tuo
・ Hua Wiang
・ Hua Wilfried Koffi
・ Hua Xia Bank
・ Hua Xin
・ Hua Xiong
・ Hua Xiren
・ Hua Yan
・ Hua Yang De Nian Hua
・ Hua Yi Secondary School
・ Hua Yu Tseng
・ Hua'an County
Hua's identity
・ Hua's lemma
・ Hua-Enhancer1
・ Huabal District
・ Huabeijituan Station
・ Huabeisaurus
・ Huaben
・ Huabiao
・ Huabiao Award for Outstanding Actor
・ Huabiao Award for Outstanding Actress
・ Huabiao Award for Outstanding New Actor
・ Huabiao Award for Outstanding New Actress
・ Huabiao Award for Outstanding Writer
・ Huabiao Awards
・ Huac-Huas District


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Hua's identity : ウィキペディア英語版
Hua's identity

In algebra, Hua's identity states that for any elements ''a'', ''b'' in a division ring,
:a - (a^ + (b^ - a)^)^ = aba
whenever ab \ne 0, 1. Replacing b with -b^ gives another equivalent form of the identity:
:(a+ab^a)^ + (a+b)^ =a^.
An important application of the identity is a proof of Hua's theorem.〔http://math.stackexchange.com/questions/161301/is-this-map-of-domains-a-jordan-homomorphism〕 The theorem says that if \sigma: K \to L is a function between division rings and if \sigma satisfies:
:\sigma(a + b) = \sigma(a) + \sigma(b), \quad \sigma(1) = 1, \quad \sigma(a^) = \sigma(a)^,
then \sigma is either a homomorphism or an antihomomorphism. The theorem is important because of the connection to the fundamental theorem of projective geometry.
== Proof ==

: (a - aba)(a^ + (b^ - a)^) = ab(b^ - a)(a^ + (b^ - a)^) = 1.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Hua's identity」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.